If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x+x^2=154
We move all terms to the left:
5x+x^2-(154)=0
a = 1; b = 5; c = -154;
Δ = b2-4ac
Δ = 52-4·1·(-154)
Δ = 641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{641}}{2*1}=\frac{-5-\sqrt{641}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{641}}{2*1}=\frac{-5+\sqrt{641}}{2} $
| 4t+10=12+2(t+8) | | -5(v+6)=7v+42 | | 3(m-1)=2m+9 | | 74−32=x−30 | | V=⅓h | | x^2+2x-10000=0 | | 6x+3=12-6x | | 41=-8c+65 | | 7h-7=8h | | 3.9g+6=1.9g+10 | | 6h−5h=3 | | -m+36=4m | | (4x-3)/8+x=(4x+3)/4+2 | | 10d+12=60-12 | | 6(3r-4)=⅜(46r+8) | | 42=w+1 | | 3(x-7)=-(2x-9) | | 34=5y-1+8y+12 | | 12=-3a+3a | | 0.3x+6=0.16x+3 | | 7^9/7^n=7^3 | | 76.80=38.4r | | 9/8x=24 | | 6.6g+6=3.6g+12 | | (7x-20)+(4x+16)=0 | | 4x(3x-1)=10-4x | | 5(x−6)+8=7x− | | 8=-9x+1 | | 2.8q+6=4q-14 | | –3(h−6)+–1=–4 | | -1+u=10u-10 | | 1/3x+6=1/6x+3 |